Consistency of Archetypal Analysis

نویسندگان

چکیده

Archetypal analysis is an unsupervised learning method that uses a convex polytope to summarize multivariate data. For fixed $k$, the finds with $k$ vertices, called archetype points, such contained in hull of data and mean squared distance between minimal. In this paper, we prove consistency result shows if independently sampled from probability measure bounded support, then points converge solution continuum version problem, which identify establish several properties. We also obtain convergence rate optimal objective values under appropriate assumptions on distribution. If distribution unbounded for modified penalizes dispersion points. Our supported by detailed computational experiments uniform disk, normal distribution, annular Gaussian mixture model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Making Archetypal Analysis Practical

Archetypal analysis represents the members of a set of multivariate data as a convex combination of extremal points of the data. It allows for dimensionality reduction and clustering and is particularly useful whenever the data are superpositions of basic entities. However, since its computation costs grow quadratically with the number of data points, the original algorithm hardly applies to mo...

متن کامل

Archetypal Analysis of Interval Data

In this paper we present a mathematical model for archetypal analysis of data represented by means of intervals of real numbers. We extend the model for single-valued data proposed in the pioneering work of Cutler and Breiman on this topic. The core problem is a non-convex optimization one, which we solve by means of a sequential quadratic programming method. We show numerical experiments perfo...

متن کامل

Weighted and robust archetypal analysis

Archetypal analysis represents observations in a multivariate data set as convex combinations of a few extremal points lying on the boundary of the convex hull. Data points which vary from the majority have great influence on the solution; in fact one outlier can break down the archetype solution. This paper adapts the original algorithm to be a robust M-estimator and presents an iteratively re...

متن کامل

Archetypal Analysis of Cellular Flame Data

The application of archetypal analysis to high-dimensional data arising from video-taped images is presented. A hybrid principal components/archetypes technique has been developed to overcome the difficulties of applying archetypes to data sets with points living in a space of dimension higher than about 500. The advantages of the method lie in the creation of patterns typical of the set as a w...

متن کامل

Non-negative Matrix Factorization via Archetypal Analysis

Given a collection of data points, non-negative matrix factorization (NMF) suggests to express them as convex combinations of a small set of ‘archetypes’ with non-negative entries. This decomposition is unique only if the true archetypes are non-negative and sufficiently sparse (or the weights are sufficiently sparse), a regime that is captured by the separability condition and its generalizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM journal on mathematics of data science

سال: 2021

ISSN: ['2577-0187']

DOI: https://doi.org/10.1137/20m1331792